

A HELLY-NUMBER FOR k -ALMOST-NEIGHBORLY SETS

BY
MARILYN BREEN

ABSTRACT

It is possible to prove the following "Helly-type" theorem for k -almost-neighborly sets.

THEOREM. $A \subseteq R^d$ is k -almost-neighborly if and only if every $2d + 1$ member subset of A is k -almost-neighborly. Moreover, if $A \subseteq \text{bdry conv } A$, then A is k -almost-neighborly if and only if every $2d$ member subset of A is k -almost-neighborly. Each bound is best possible.

Let A be an arbitrary subset of R^d with $\dim \text{conv } A = d$. Then A is k -almost-neighborly if and only if for every k member subset B of A , $\text{conv } B \subseteq \text{bdry conv } A$. Since $\dim \text{conv } A = d$, there is a set of $d + 1$ points of A whose convex hull is d dimensional. Therefore, the definition of k -almost-neighborly is meaningful only for $1 \leq k \leq d$. If A is k -almost-neighborly, then A is j -almost-neighborly for $1 \leq j \leq k$. Clearly if $A \cap \text{int conv } A \neq \emptyset$, then A is not k -almost-neighborly for any $1 \leq k$.

It is easily proved (and in fact appears as an exercise in Grünbaum [2]) that a subset A of R^d is k -almost-neighborly if and only if every $2d + k$ member subset of A is k -almost-neighborly. Grünbaum has conjectured that the bound might be lowered to $2d + 1$. The following theorem shows that $2d + 1$ is indeed the correct Helly-number.

THEOREM. *Let A be an arbitrary subset of R^d . Then A is k -almost-neighborly if and only if every $2d + 1$ member subset of A is k -almost-neighborly. Moreover, if $A \subseteq \text{bdry conv } A$, then A is k -almost-neighborly if and only if every $2d$ member subset of A is k -almost-neighborly. Each bound is best possible.*

The proof will require the following result, which is a special case of theorem D of Bonnice-Reay [1].

Received October 25, 1971

LEMMA. Let $A \subseteq R^d$, $p \in \text{int conv } A$. Let $B \subseteq A$ be the vertex set of a maximal simplex for which $p \in \text{rel int conv } B$, $j = \dim \text{conv } B$. Then there is a subset C of A containing B with $d + 1 \leq |C| \leq 2d - j + 1 \leq 2d$ and $p \in \text{int conv } C$.

PROOF. Certainly if A is k -almost-neighborly, then every subset of A is k -almost-neighborly.

To prove the converse, consider two cases.

Case 1. If $A \not\subseteq \text{bdry conv } A$, then select some point p in $A \cap \text{int conv } A$. Using the Lemma, select C in A such that $d + 1 \leq |C| \leq 2d$ and $p \in \text{int conv } C$. Then $|C \cup \{p\}| \leq 2d + 1$ yet $p \notin \text{bdry conv } (C \cup \{p\})$. Thus $C \cup \{p\}$ is not 1-almost-neighborly and cannot be k -almost-neighborly. Therefore A is not k -almost-neighborly. We have proved that if $A \not\subseteq \text{bdry conv } A$, neither A nor every $2d + 1$ member subset of A is k -almost-neighborly and the theorem is satisfied.

Case 2. Henceforth assume $A \subseteq \text{bdry conv } A$. We use a contrapositive argument. Assume that A is not k -almost-neighborly and let B denote a k member subset of A for which $\text{conv } B \not\subseteq \text{bdry conv } A$. Thus $\text{conv } B$ contains some point p interior to $\text{conv } A$. Reduce to a subset B_0 of B such that $p \in \text{rel int conv } B_0$ and B_0 is the vertex set of a maximal simplex. Using the Lemma, if $j = \dim \text{conv } B_0$, select a d dimensional subset C of A containing B_0 with $d + 1 \leq |C| \leq 2d - j + 1 \leq 2d$ and $p \in \text{int conv } C$. Certainly $|B_0| = j + 1 \leq k$. Since $p \in \text{conv } B_0$, $\text{conv } B_0 \not\subseteq \text{bdry conv } C$, C is not $(j + 1)$ -almost-neighborly and certainly not k -almost-neighborly, completing the proof.

The following examples show the bounds in case 1 and 2 are best possible.

EXAMPLE 1. Let e_i be the point in R^d whose i th component is 1 and whose other components are zero. Let A denote the points e_i , $1 \leq i \leq d$, together with their negatives and the origin p . Then $A \not\subseteq \text{bdry conv } A$, each $2d$ member subset of A is 1-almost-neighborly while A is not.

EXAMPLE 2. For A in example 1, let $B = A \sim \{p\}$. Then each $2d - 1$ member subset of B is 2-almost-neighborly while B is not.

REFERENCES

1. W. Bonnice and J. R. Reay, *Relative Interiors of Convex Hulls*, Amer. Math. Soc. Proc., 20, (1969), 246-250.
2. B. Grünbaum, *Convex Polytopes*, New York, 1967.